
Module Interface Documentation - 
 Using the Trace Function Method (TFM)

David Lorge Parnas and Marius Dragomiroiu

Software Quality Research Laboratory

Faculty of Informatics and Electronics

University of Limerick, Ireland

Abstract
A new approach to the documentation (description or specification) of interfaces for information 
hiding components, the Trace Function Method (TFM), is described. The motivation and design 
assumptions behind the method are explained. The concepts of event, event descriptor, and trace are 
defined. Basic functions on event descriptors and traces are introduced. The method is illustrated on 
some simple examples. 

Software Quality Research Laboratory - University of Limerick - Ireland

1/33
David Parnas                2006 August 08  12:15     slides



 Introduction

Needed: a way to describe software without code. 
Software Reference Documentation
Defining the required content of documents
Not about tabular expressions

Software Quality Research Laboratory - University of Limerick - Ireland

2/33
David Parnas                2006 August 08  12:15     slides



Specifications and Other Descriptions

 •A description states properties of a product; it may 
include both incidental and required properties. 

 •A specification is a description that states only required 
properties; 

 •A Full specification is a specification that states all 
required properties. 

Software Quality Research Laboratory - University of Limerick - Ireland

3/33
David Parnas                2006 August 08  12:15     slides



Obligations of Those who Agree on a Specification

 • Implementers may either accept the task of implementing that 
specification, or report problems with the specification and propose 
a revision; they may not accept the task and then (knowingly) build 
something that does not satisfy the specification. 

 • Users must be able to count on the properties stated in a 
specification; however, they must not base their work on any 
properties mentioned in any another description unless those 
properties are included in the specification. 

 • Purchasers are obligated to accept any product that meets the (full) 
specification that they provided to the supplier. 

Other descriptions may be useful for understanding particular implementations. 

Software Quality Research Laboratory - University of Limerick - Ireland

4/33
David Parnas                2006 August 08  12:15     slides



Software Design Issues

Programs, Components and Modules
Design Principles
 • divide and conquer
 • loose coupling
 • separation of concerns
 • encapsulation
 • information hiding
Applying these guidelines requires that we document the 
interface information precisely and without revealing any 
internal information. 
Multiple-Interface Modules (upper face, lower face, 
restricted face)

Software Quality Research Laboratory - University of Limerick - Ireland

5/33
David Parnas                2006 August 08  12:15     slides



Earlier approaches to module interface documentation 

Approaches to methods of writing module interface 
specifications can be divided into four classes:
 • pragmatic, such as [Pa72a], [CP84], [CPS84]
 • algebraic, such as the pioneering work of Guttag[GH78]
 • axiomatic, such as the pioneering proposal of Zilles[LZ75]
 • mixtures of the above. 

Software Quality Research Laboratory - University of Limerick - Ireland

6/33
David Parnas                2006 August 08  12:15     slides

%23CP84
%23CP84
%23GH78
%23GH78
%23LZ75
%23LZ75


Strengths and Weaknesses of Various Approaches

Pragmatic approaches
 • Work most of the time
 • Major limitations in infrequently occurring cases.
Algebraic and Axiomatic Approaches
 • Elegant
 • Counter-Intuitive
 • Fewer limitations than pragmatic but still limited.
Trace Assertion Approaches
 • Still Fewer Limitations
 • Still counter-intuitive.
 • Less elegant

Software Quality Research Laboratory - University of Limerick - Ireland

7/33
David Parnas                2006 August 08  12:15     slides



Readability

No guarantee that a document is readable. An approach can 
allow and help writers to produce easily used documents 

 •Directness

 •Abstraction

 •Ability to distinguish the essential from incidental 
information

 •Organization

Software Quality Research Laboratory - University of Limerick - Ireland

8/33
David Parnas                2006 August 08  12:15     slides



What’s new in TFM

The method described in this paper, TFM, deviates from 
past efforts in several significant ways:
  •Not equational or axiomatic  -  “closed form”

  •Full use of multidimensional (tabular) expressions - same as other 
documents.

  •Almost  conventional logic [Pa93].

  •Limitations  removed. 

  •Can document modules that communicate through global variables 

  •states the most often needed information directly

  •abstracts from internal implementation details

  •clearly distinguishes the essential information from other information

  •allows the use of standard mathematical concepts 

  •dictates a strict organization for the information to ease retrieval

Software Quality Research Laboratory - University of Limerick - Ireland

9/33
David Parnas                2006 August 08  12:15     slides



Communication with Software Modules 

Software modules two distinct data structures. 
 • a hidden (internal) data structure 
 • a global data structure  
Note that:
  •The “value” of a function program is treated as a global variable. 

  •When programs communicate using parameters, the arguments are placeholders for the shared/
global variables that will eventually be used for communication.

  •Often, the event is the invocation of one of the module’s externally accessible programs. A global 
variable that contains the name of the program invoked at an event, must be regarded as a global 
variable that is one of the inputs.

  •Time and such things as “cpu cycles consumed”, which are often considered special in some 
inexplicable way, are also easily considered as global variables and require no special treatment. 

Shared/global variables are fundamental way that modules 
communicate.  

Software Quality Research Laboratory - University of Limerick - Ireland

10/33
David Parnas                2006 August 08  12:15     slides



Events

A software module may be viewed as a finite state machine 
operating at discrete points in time, which we call events.
At each event:
 •  reading some global variables (e.g. via input parameters), and
 •  changing its internal state, and
 •  changing the value of some of the global variables.

Software Quality Research Laboratory - University of Limerick - Ireland

11/33
David Parnas                2006 August 08  12:15     slides



Event descriptors

Each element of the global data structure must have a 
unique identifier .
PGM is reserved for program invoked at an event 
A full event descriptor specifies the values of every variable 
in the global data structure before and after the event. 
Abbreviated event descriptors contain only input/output  
Example of an abbreviated event descriptor. 

PGM ‘io ‘in io’ out’
name of 
program invoked 
in event

value of io 
before the event

value of in 
before the event

value of io after 
the event

value of out 
after the event

Software Quality Research Laboratory - University of Limerick - Ireland

12/33
David Parnas                2006 August 08  12:15     slides



Traces

A trace is a finite sequence of event descriptors; it 
describes a sequence of events. 
A subtrace of a trace T is a sequence of the event 
descriptors that is contained within a trace T.
A prefix of a trace T contains the first n elements of T.  
A 5 element trace: 

PGM ‘io1 ‘in2 io1’ out1’
name of program invoked value of io1 before the event value of in2 before the event value of io1 after the event value of out1 after the event
name of program invoked value of io1 before the event value of in2 before the event value of io1 after the event value of out1 after the event
name of program invoked value of io1 before the event value of in2 before the event value of io1 after the event value of out1 after the event
name of program invoked value of io1 before the event value of in2 before the event value of io1 after the event value of out1 after the event
name of program invoked value of io1 before the event value of in2 before the event value of io1 after the event value of out1 after the event

Note that “trace” is a formal concept.
A history, is a trace that accurately describes all of the 
events that affected a module after its initialization. 

Software Quality Research Laboratory - University of Limerick - Ireland

13/33
David Parnas                2006 August 08  12:15     slides



Trace Function (TFM) Component Interface Documentation

A TFM component interface document comprises: 
 • a complete description of the component’s inputs (their type), and 
 • a complete description of the component’s outputs (their type) , and 
 • a description of a set of relations, each one describing the relation 

of the value of an output to the history of the values of the inputs. 
Note that histories includes all past behavior including the 
actual outputs; this means that one can use information 
about both past outputs and past inputs to determine the 
possible output values after the last event in a trace. 

Software Quality Research Laboratory - University of Limerick - Ireland

14/33
David Parnas                2006 August 08  12:15     slides



When is a trace-based document complete?

A TFM document is complete if there is a relation for every 
output and the complete set of possible traces for which 
the value of each output is defined is included in the 
domain of the corresponding relation. 

Software Quality Research Laboratory - University of Limerick - Ireland

15/33
David Parnas                2006 August 08  12:15     slides



When is a trace-based document consistent?

Because each output is defined separately (dependent only 
on inputs and earlier values of other outputs), the 
document is consistent if each individual relation is 
consistently defined. Using tabular notation, consistency of 
a function/relation definition is usually easy to establish. 

Software Quality Research Laboratory - University of Limerick - Ireland

16/33
David Parnas                2006 August 08  12:15     slides



What is a TFM specification? 

A TFM specification of a component M characterizes the set 
of traces that are be considered acceptable for M. 
If any of the behaviors described in the document as 
acceptable would be considered unacceptable by users, or 
if any user-acceptable behavior is not described, the 
purported specification is incorrect.
If an implementation shows behavior not allowed by a 
correct specification, the implementation is incorrect.

Software Quality Research Laboratory - University of Limerick - Ireland

17/33
David Parnas                2006 August 08  12:15     slides



What is a TFM description?

A TFM description of an implementation of a module M is a 
TFM document that characterizes the set of traces that are 
possible with that implementation.

If the implementation exhibits any behavior not included in 
a document proposed as a complete description, or if the 
description describes behavior that never happens, that 
purported description is incorrect. 

Software Quality Research Laboratory - University of Limerick - Ireland

18/33
David Parnas                2006 August 08  12:15     slides



When is an implementation of a module correct?

Two stages:
 • Produce a TFM description of the behavior of the implementation
 • Compare the TFM description with the TFM specification
In the comparison we determine:
 • that the two documents match syntactically, i.e. that the inputs and 

outputs match in name and type,
 • that each relation in the description is a subset of the 

corresponding relation in the specification,
 • that the domain of each relation in the description contains the 

domain of the corresponding relation in the specification. 
 

Software Quality Research Laboratory - University of Limerick - Ireland

19/33
David Parnas                2006 August 08  12:15     slides



Modules that Create more than one Object 

 •Viewing a component as creating many objects is only 
useful if the objects are independent - no side-effects.

 •One can prepare much of the interface documentation as 
if the component created only one object. 

 •Each object must have a identifier. 

 •The identifier is prepended to the name of the operation.

 •Additional objects are named as operands in the same 
way as operands of other types. 

 • Each object has a separate trace,“T.<object name>”. 
 

Software Quality Research Laboratory - University of Limerick - Ireland

20/33
David Parnas                2006 August 08  12:15     slides



Primitive Functions on Event Descriptors

If e is an event descriptor and “V” is the unique name of a 
variable, 

 •“ ‘V(e) ” denotes the value of V immediately before the 
event described by e

 •“ V’(e) ” denotes the value of V immediately after that 
event 

 •PGM(e) is the name of the program invoked at that event 
(if any). 

 

Software Quality Research Laboratory - University of Limerick - Ireland

21/33
David Parnas                2006 August 08  12:15     slides



 Basic functions and predicates on traces

L(T) (length) 

r(T) (most recent) 

o(T) (oldest)

p(T) (precursor)

(T) (subsequent)

rn(n,T) (most recent n)

pn(n,T) (precursor of most recent n)

on(n,T) (oldest n)

sn(n,T) (subsequent n)

mrcall(pg,T) (most recent)

Software Quality Research Laboratory - University of Limerick - Ireland

22/33
David Parnas                2006 August 08  12:15     slides



 Useful function generators on traces

ex(P)(T) (exists)
ex(P)(T) is true if and only if T contains an event descriptor that satisfies P. 

ost(P)(T) (oldest such that)
et(P)(T) (extracted trace)
irst(P)(T) (index recent such that)
iost(P)(T) (index oldest such that

Software Quality Research Laboratory - University of Limerick - Ireland

23/33
David Parnas                2006 August 08  12:15     slides



Date Module

Output Variables 

Variable Name Type

<id>.day <integer>

<id>.month <integer>

<id>.year <integer>

<id>. Value <integer>
Input Variables

Variable Name Type

PGM <program name>

in1 <integer>

in2 date

Software Quality Research Laboratory - University of Limerick - Ireland

24/33
David Parnas                2006 August 08  12:15     slides



Access Programs
Program Name Oname Value in1 in2 Abbreviated Event Descriptor

SETDAY <id> <integer> (PGM:SETDAY, ‘in, day’)
SETMONTH <id> <integer> (PGM:SETMONTH, ‘in, month’, )

SETYEAR <id> <integer> (PGM:SETYEAR, ‘in, year’)

GETDAY <id> <integer> (PGM:GETDAY, Value’, ‘day)
GETMONTH <id> <integer> (PGM:GETMONTH, Value’, ‘month)
GETYEAR <id> <integer> (PGM:GETYEAR, Value’, ‘year)

NEWDATE <id> <id> (PGM:NEWDATE, ‘<in2>, <in2>’)
DELETEDATE <id> (PGM:DELETEDATE, ‘<in2>, <in2>’)

COPYDATE <id> (PGM:COPYDATE, ‘<in2>)
Auxiliary Functions
day(T) ≡ 

(T = _) ∨ PGM(r(T) = NEWDATE 0

¬(T = _) ∧

(PGM(r(T)) = SETDAY) ‘in(r(T))
(PGM(r(T)) = COPYDATE) day(‘in2(r(T))

(PGM(r(T)) = DELETEDATE) 
¬(PGM(r(T)) = SETDAY ∨
PGM(r(T)) = COPYDATE ∨ 

PGM(r(T)) = DELETEDATE ∨
PGM(r(T) = NEWDATE ) 

day(p(T))

Software Quality Research Laboratory - University of Limerick - Ireland

25/33
David Parnas                2006 August 08  12:15     slides



month(T) ≡ 
(T = _) ∨ PGM(r(T) = NEWDATE 0

¬(T = _) ∧

(PGM(r(T)) = SETMONTH) ‘in(r(T))
(PGM(r(T)) = COPYDATE) month(‘in2(r(T))

(PGM(r(T)) = DELETEDATE) 
¬(PGM(r(T)) = SETMONTH ∨

PGM(r(T)) = COPYDATE ∨ 
PGM(r(T)) = DELETEDATE ∨

PGM(r(T) = NEWDATE ) 

month(p(T))

year(T) ≡ 

(T = _) ∨ PGM(r(T) = NEWDATE 0

¬(T = _) ∧

(PGM(r(T)) = SETYEAR) ‘in(r(T))
(PGM(r(T)) = COPYDATE) year(‘in2(r(T)))

(PGM(r(T)) = DELETEDATE) 
¬(PGM(r(T)) = SETYEAR ∨
PGM(r(T)) = COPYDATE ∨ 

PGM(r(T)) = DELETEDATE ∨
PGM(r(T) = NEWDATE ) 

year(p(T))

Software Quality Research Laboratory - University of Limerick - Ireland

26/33
David Parnas                2006 August 08  12:15     slides



Value (T) ≡ 

PGM(r(T)) = GETDAY day’(T) 
PGM(r(T)) = GETYEAR year’(T) 

PGM(r(T)) = GETMONTH month’(T) 

¬( PGM(r(T)) = GETDAY ∨ PGM
(r(T)) = GETYEAR ∨ PGM(r(T)) = 

GETMONTH )

Output Functions
<id>.day ≡ day(T<id>)
<id>.month ≡ month(T<id>)
<id>. year ≡ year(T<id>)
<id>.Value ≡ Value(T<id>)

Software Quality Research Laboratory - University of Limerick - Ireland

27/33
David Parnas                2006 August 08  12:15     slides



Time storage module

Output Variables

Variable Name Type

hr <integer>

min <integer>

Access Programs
Program Name ‘in Abbreviated Event Descriptor

SET HR <integer> (PGM:SET HR, ‘in, hr’)

SET MIN <integer> (PGM: SET MIN, ‘in, min’)

INC  (PGM:INC, hr’, min’)

DEC (PGM:DEC, hr’, min’)

Output Functions
hr(T) ≡ 

PGM(r(T)) = SET HR ∧
0 ≤ ’in(r(T)) < 24 ‘in(r(T))

¬ (0 ≤ in(r(T)) < 24) hr((p(T)))

PGM(r(T)) = SET MIN hr((p(T)))

Software Quality Research Laboratory - University of Limerick - Ireland

28/33
David Parnas                2006 August 08  12:15     slides



PGM(r(T)) = INC ∧
min(p(T))= 59 ∧

hr(p(T))= 23 0

¬ hr(p(T))= 23 1+ hr((p(T)))

¬ (min(p(T))=59) hr((p(T)))

PGM(r(T)) = DEC ∧

¬ (min(p(T))= 0) hr((p(T)))

min(p(T))= 0 ∧
¬ (hr(p(T)))= 0 hr((p(T)))-1

hr(p(T))= 0 23

T= _ 0

 min(T) ≡ 

PGM(r(T)) = SET HR min(p(T))

PGM(r(T)) = SET MIN ∧
0 ≤ ‘in(r(T)) ≤ 59 ‘in(r(T))

¬ (0 ≤ ‘in(r(T)) ≤ 59) min(p(T))

PGM(r(T)) = INC ∧
min(p(T)) = 59 0

¬ (min(p(T))=59) min(p(T)) + 1

PGM(r(T)) = DEC ∧
¬ (min(p(T))= 0) min((p(T))) −1

min(p(T))= 0 59

T= _ 0

Software Quality Research Laboratory - University of Limerick - Ireland

29/33
David Parnas                2006 August 08  12:15     slides



A stack of limited range and depth

Output Variables

Variable Name Type

top <integer>
depth <integer>
exc {none, range, depth, empty}

Value <integer>

Access Programs
Program Name ‘Value ‘in Abbreviated Event Descriptor

PUSH <integer> (PGM:PUSH, ‘in, top’, depth’,exc’)
POP (PGM:POP, top’, depth’, exc’)
TOP <integer> (PGM:TOP, Value’, exc’)

DEPTH <integer> (PGM:DEPTH, Value’)

Auxiliary Functions 
inrange(i) ≡ LB ≤ i ≤ UB
noeffect(e)≡(PGM(e)=PUSH∧(¬inrange(‘in(e)))∨ PGM(e)=TOP ∨ PGM(e) = DEPTH 
full(T) ≡ depth(T) = d
empty(T) ≡ depth(T) = 0

Software Quality Research Laboratory - University of Limerick - Ireland

30/33
David Parnas                2006 August 08  12:15     slides



ps(T1,T2) ≡

T2 = _ T1

(T2 ≠ _ ) ∧ noeffect(o(T2)) ps(T1,s(T2))

(T2 ≠ _ ) ∧ 
¬noeffect(o(T2))∧

PGM(o(T2))=PUSH ∧
 full(T1) ps(T1,s(T2))

¬ full(T1) ps(T1.o(T2),s(T2))

PGM(o(T2))=POP ∧
 ¬empty(T1) ps(p(T1), s(T2))

empty(T1) ps(T1, s(T2))

strip(T) ≡ ps(_,T)

Output variable functions
top(T) ≡ 

strip(T) = _

strip(T) ≠ _ ‘in(r(strip(T)))

Value(T) ≡ 

PGM(r(T))=TOP top(p(T))

PGM(r(T))=DEPTH depth(p(T))

PGM(r(T))=PUSH

PGM(r(T))=POP

Software Quality Research Laboratory - University of Limerick - Ireland

31/33
David Parnas                2006 August 08  12:15     slides



depth(T) ≡ 

T = _ 0

(T ≠ _) ∧

noeffect(r(T)) depth(p(T))

¬ noeffect(r(T)) ∧

PGM(r(T))=POP ∧
depth(p(T))= 0 0

depth(p(T)) ≠ 0 depth(p(T)) - 1

PGM(r(T))=PUSH ∧
depth(p(T))= d d

depth(p(T)) ≠ d depth(p(T)) + 1

exc(T) ≡ 

PGM(r(T))=PUSH ∧

¬inrange(‘in(r(T))) range

inrange(‘in(r(T))) ∧
L(strip(p(T))) = d depth

¬(L(strip(p(T))) = d) none

(PGM(r(T))=POP ∨ 
PGM(r(T))= TOP) ∧

L(strip(p(T))) = 0 empty

¬ (L(strip(p(T))) = 0) none

PGM(r(T))=DEPTH none

Software Quality Research Laboratory - University of Limerick - Ireland

32/33
David Parnas                2006 August 08  12:15     slides



 Conclusions

Nobody should think that writing precise documentation is 
easy;

Simple cases are simple.

Complex cases remain complex.  

The key to simple specifications remains good design. 

TFM  seems to be as good as it gets.

Software Quality Research Laboratory - University of Limerick - Ireland

33/33
David Parnas                2006 August 08  12:15     slides


